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Abstract

Image classification, a significant application of com-
puter vision, is now widely used in industries such as trans-
portation, manufacturing, and agriculture. Various com-
puter vision models, including Residual Neural Networks
(ResNets), Convolutional Neural Networks (CNNs), and Vi-
sion Transformers (ViTs), enable such applications. This
project focuses on recently published vision transformer
models, specifically, the Neighborhood Attention Trans-
former (NAT), the Dilated Neighborhood Attention Trans-
former (Di-NAT), the Dual Attention Vision Transformers
(DaViT), and the Multi-Axis Vision Transformer (MaxViT)
for image classification tasks. Our research objectives will
be achieved by first demonstrating and comparing the struc-
tures of these four models from a theoretical perspective.
Subsequently, we will fine-tune these models on the iNat-
uralist dataset for fungi classification tasks and compare
their performance. Lastly, we will attempt to optimize the
models to achieve superior performance.

1. Introduction

In late 2020, the Vision Transformer (ViT) was intro-
duced as an image classifier that utilizes a Transformer En-
coder operating on an embedded space of image patches,
primarily for large-scale training [2]. This approach ignited
a trend in creating Transformer-like models with high data
efficiency. For instance, the Neighborhood Attention Trans-
former (NAT) was proposed in 2022 [4], building upon
the foundations of the Vision Transformer. Subsequent re-
search led to the emergence of the Dilated Neighborhood
Attention Transformer (DiNAT) [3]. The Dual Attention
Vision Transformers and Multi-Axis Vision Transformer
are other examples of ViT models that were recently pub-
lished [1, 6].

In this work, we revisit the concepts of Neighborhood
Attention (NA) and the Neighborhood Attention Trans-
former (NAT), a scalable hierarchical transformer based on

NA. We explore the DiNAT, a simple yet potent sparse
global attention pattern, allowing for exponential receptive
field growth and capturing longer-range context without any
additional computational burden, all while maintaining the
symmetry in the neighborhood introduced by NA. We com-
pare these two models from both theoretical and experimen-
tal perspectives. Additionally, we study the DaViT, another
simple, yet effective, transformer architecture designed to
capture the global context while maintaining computational
efficiency. Lastly, we discuss the MaxViT, an efficient and
scalable attention model that can ”see” globally throughout
the entire network, even at earlier, high-resolution stages.

2. Related Works
All four models we have chosen come with available

code. In this project, we analyze and compare the origi-
nal code published with the papers. Then, we use the pre-
trained model provided by Hugging Face to fine-tune and
optimize the models.

3. Dataset
The project utilizes the iNaturalist dataset [5] to train and

evaluate the performance of different models. Due to time
and device constraints, we plan to use the Fungi subcate-
gories as our image classification target. This Fungi sub-
set contains 121 categories with 5,826 training images and
1,780 validation images. For demonstration, Figure 1 shows
three examples of categories in the Fungi dataset: Phaeolus
schweinitzii, Geastrum saccatum, and Lactarius alnicola,
from left to right. However, this dataset is highly biased,
as shown in Figure 2, which displays the number of images
in each category.

4. Model Comparisons
The NAT and DiNAT are both variations of the trans-

former model that have been proposed to improve the mod-
eling of long-range dependencies in sequences. While both
models share similarities with the standard transformer ar-



Figure 1. Illustration of the iNaturalist Fungi Images

Figure 2. Biased iNaturalist Fungi Dataset

chitecture, they possess key differences in terms of their at-
tention mechanism and receptive field.

The NAT model was introduced as an extension of the
original transformer to address the computational ineffi-
ciency of the standard self-attention mechanism. In the
standard transformer, self-attention is applied to all posi-
tions in the input sequence, resulting in quadratic com-
plexity relative to the sequence length. NAT aims to re-
duce this complexity by limiting attention to a neighbor-
hood of nearby positions. Rather than attending to all po-
sitions, NAT restricts attention to a fixed-size neighborhood
around each position. This significantly reduces computa-
tional complexity and makes it more efficient for longer se-
quences. The receptive field of each position is limited to a
fixed neighborhood size, regardless of the distance between
the positions. This permits the effective capture of local
dependencies but may struggle when modeling long-range
dependencies.

In contrast, the dilated version of the NAT model, Di-
NAT, extends the neighborhood attention mechanism by in-
corporating dilation. Dilation introduces a parameter that
controls the spacing between the attended positions, allow-
ing for a larger receptive field without sacrificing compu-
tational efficiency. DiNAT introduces a dilation factor that
determines the spacing between attended positions. By in-
creasing the dilation factor, the receptive field can be ex-
panded exponentially while maintaining a linear computa-
tional complexity. Unlike NAT, DiNAT has a variable re-
ceptive field that can capture both local and long-range de-
pendencies. The receptive field increases with the dilation
factor, enabling the model to effectively capture global con-
text.

Providing a detailed comparison between NAT (and Di-
NAT) with DaViT and MaxViT is challenging. However,

there are specific details that distinguish these models. The
concept of dual attention in vision transformers typically
refers to the incorporation of two different types of attention
mechanisms to enhance the model’s ability to capture both
spatial and channel-wise dependencies. Spatial attention fo-
cuses on modeling the relationships between different spa-
tial positions within an image. It helps the model attend to
relevant regions and capture spatial dependencies, allowing
for more effective feature extraction. Channel attention, on
the other hand, focuses on modeling relationships between
different channels or feature maps. It aims to assign im-
portance to specific channels to capture relevant semantic
information and enhance feature representation. By com-
bining both spatial and channel attention mechanisms, the
DaViT model can potentially improve the performance of
vision transformers by capturing both spatial and channel-
wise dependencies simultaneously.

On the other hand, the concept of multi-axis attention
in vision transformers refers to the utilization of attention
mechanisms along multiple axes or dimensions within an
image. Instead of applying attention only in the spatial do-
main, MaxViT extends the attention mechanism to other
axes, such as scales or resolutions. By incorporating atten-
tion along multiple axes, the MaxViT model aims to cap-
ture multi-scale information and hierarchical relationships
in visual data. This allows the model to handle variations
in object sizes, capture context at different levels of detail,
and potentially improve performance on tasks that require
understanding and processing images at multiple scales.

5. Experiments and Results
5.1. General Results and Accuracy

We fine-tuned the Neighborhood Attention Transformer
based on nat-mini-in1k-224 and achieved an accuracy of
75.28%, as shown in Figure 3.

Figure 3. NAT Fine Tune Loss and Accuracy

Next, we fine-tuned the DiNAT with the base model
nat-mini-in1k-224 and achieved an accuracy of 77.32%, as
shown in Figure 4.



Figure 4. DiNAT Fine Tune Loss and Accuracy

We then fine-tuned the Multi-Axis ViT based on
maxvit tiny rw 224 and achieved an accuracy of 78.56%,
as shown in Figure 5.

Figure 5. MaxVit Fine Tune Loss and Accuracy

Finally, we achieved the highest accuracy with a model
fine-tuned based on davit tiny.msft in1k, which achieved an
accuracy of 80.93%, as shown in Figure 6.

Figure 6. DaViT Fine Tune Loss and Accuracy

Compared to the most accurate algorithms on this
dataset, as shown in Figure 7, our model achieved a compa-
rable accuracy with state-of-the-art performance.

Since DaViT achieved the highest accuracy in our tests,
we conducted analysis and optimization on that model.

Figure 7. Rank Board of iNaturalist 2017 Dataset

5.2. Model Debiasing

As we mentioned earlier, the dataset itself is biased.
Some categories are overrepresented due to excess data,
while others are underrepresented due to a lack of data. As
per feedback from the professor during the presentation, we
decided to try to debias the training data. Here, we man-
ually set the number of images we wanted for each cate-
gory, oversampling underrepresented categories and under-
sampling overrepresented ones. We analyzed how the num-
ber of images in each category affected model accuracy.

Shown in Figure 8, we found that when we set the num-
ber of images to 400 for each category, the model achieved
its highest accuracy.

Figure 8. Model Accuracy vs Number of images in Each Category

5.3. Bias Analysis

After debiasing the training data, we plotted the confu-
sion matrix in Figure 9, with a close-up view in Figure 10.
Diagonal elements show the correct prediction. There is no
single category that appears more likely to be classified in-
correctly. This indicates our model is unbiased.

5.4. Learning Rate

As shown in Figure 11, we found that fine-tuning the
model requires an extremely small learning rate since the
model is already well-trained, and a large learning rate will
prevent it from learning.



Figure 9. Confusion Matrix

Figure 10. Close-Up View of Part of Confusion Matrix

Figure 11. Close-Up View of Part of Confusion Matrix

5.5. Fine-Tuning with Extra Layers

In all previous experiments, we fine-tuned the existing
parameters in the original model. However, another way to
improve performance is by adding extra layers. The pre-
trained model will be used as a feature extractor, and the
extra layers will perform the classification.

We tried multiple combinations of layers and their sizes,
and the best-performing combination was a single Linear
layer added back to the model.

However, as shown in Figure 12, these extra layers did
not improve the accuracy. We suspect this is because the

dataset is too small, and the model is already overfitting.
Adding extra layers increased the model complexity and
worsened the overfitting. Hence, it did not improve the ac-
curacy.

Figure 12. DiNAT Fine Tune With Extra Layer

5.6. Training a Lightweight DiNAT from Scratch

For comparison, we also trained a lightweight DiNAT
from scratch. The loss is shown in Figure 13.

Training from scratch had the worst performance with
an accuracy of 27.35%. It is not surprising that training
from scratch has lower accuracy, as training a transformer
requires a large amount of data, and here we only had about
5000 images for training.

Figure 13. Training from Scratch Loss and Accuracy

6. Conclusion
This project offers a comparative analysis of the four

aforementioned transformer-based models in image classi-
fication tasks, underlining the strengths and drawbacks of
each model. By applying these models to the iNaturalist
dataset, we aim to gain insights into their performance when
faced with a different dataset. We hope that this project will
prove valuable to researchers and practitioners in the fields
of computer vision and machine learning, assisting them in
selecting the most suitable model for their specific image
classification tasks.
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