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Introduction & Goal

e Task: image classification using transformers
e Models:
o Neighborhood Attention Transformer (NAT)
o Dilated Neighborhood Attention Transformer (Di-NAT)
o Dual Attention Vision Transformers (DaViT)
o Multi-Axis Vision Transformer (MaxViT)
e Goal:
o demonstrate how these four models work
o compare the differences
o evaluate these models using the dataset from iNaturalist 2017



Model Comparison and Performance Insights

* All the models are based on Vision Transformer, introduced by “ An
Image is Worth 16x16 Words: Transformers for Image Recognition at

Scale”

Vision Transformer (ViT)
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Model Comparison and Performance Insights
Neighborhood Attention Transformer(NAT)
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Neighborhood Attention Transformer Architecture
® NAT is transformer based on NA
® a convolutional downsampler + 4 sequential levels, each consisting of
multiple NAT Blocks, which are transformer-like encoder layers.
® Between the levels, feature maps are downsampled to half their spatial size,
while their depth is doubled.



Model Comparison and Performance Insights
Neighborhood Attention Transformer(NAT)

|
Hxw X X% 16 % 16 5 X 5 1
p - | = - I
B0 B @ B @ on T —
SO = £a =t o < I
S8 [=3 SE| |=% SE|l |3 SE| |=3 EX I
TSP LS —PHe R P LIS —H T P LE— T E P OS—» S 2> U 1
= x Zm = = Z @ = = Z @ = £ =@ L c =
g5 e = e = ° z sl =
o 6 8 6 8 o 8 2
— -/ — — |
)(Nl XN2 XNg XN4 I
1
Neighborhood Attention Transformer Architecture NAT Block

® Fach layer is comprised of a multi-headed neighborhood attention, a multi-
layered perceptron, Layer Norm before each module, and skip connections.



Model Comparison and Performance Insights
Dilated Neighborhood Attention Transformer (DiNAT)
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Dilated Neighborhood Attention Transformer Architecture
® Downsamples inputs to a quarter of their original spatial resolution
® Sends them through 4 layers of DiNA Transformer encoders



Model Comparison and Performance Insights
Dilated Neighborhood Attention Transformer (DiNAT)

Initial
Downsampler

H W —_—
=% H W
N : 16 X 16
s b ()
o —
g 1 g K
= x e = x . = = x =
<V g E <v . |TE < g E
—HZ 8 S 28— S 28— 5 §
5o 2o 5o - arf (o 50 SRS
s . s =
5) . 5] o)
o ; o a
= S
—
~— x N3 -
L XN2 »
xN; e

Dilated Neighborhood Attention Transformer Architecture
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DiNAT Block

® DiNAT layers are similar to NAT, but it switches between local NA and sparse
global DiNA at every other layer



Model Comparison and Performance Insights
Dilated Neighborhood Attention Transformer (DiNAT)
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® An illustration of a single pixel’s attention span in NA and DiNA.
® NA localizes attention to the pixel’s nearest neighbors.
® DiNA extend NA’s local attention to a less constrained sparse global attention.



NAT vs. DINAT

o DiNATextends NAE by introducing a dilated attention mechanism
attention is applied not only to neighboring regions within a fixed
spatial range but also to regions that are further away.

o The dilation factor controls the distance between regions, with
larger values allowing for a wider range of attention.



Model Comparison and Performance Insights
Dual Attention Vision Transformers(DaViT)

 Compared with regular ViT, DaViT has dual attention layer: Channel
Group Attention and Spatial Window Multihead Attention
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(a) Dual Attention Block (b) Spatial Window Multihead Attention (c) Channel Group Attention
p

P : Number of total patches N,;: Number of windows ~ N,: Number of channel groups  C,,: Channels per head & Matrix Product
C : Number of total channels  N,: Number of heads P, Patches per window C,: Channels per group @ Elementwise Sum




Model Comparison and Performance Insights
Multi-Axis Vision Transformer(MaxViT)

* MaxViT: simply repeating the basic building block over multiple
stages.

S0: Stem S1:repeat x L1 S2: repeat x L2
(112x112) (56 x 56) (28 x 28) (14 x 14)

S3:repeat x L3 S4: repeat x L4 Head
(7x7) (1x1)

MaxViT MaxViT MaxViT
Block Block Block

(2=s)
E€XE AUOD
EXE AUOD




iINaturalist 2017 dataset

o We utilize the fungi subset of
the iNaturalist 2017 dataset

e 7,606 images, distributed
across 121 classes
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e Highly unbalanced data
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We are approaching State-of-the-Art Accuracy
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Fine-Tuning Parameter Exploration

Loss

Comparison of Learning Rates
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Fine-Tuning comparation on different model

NAT Fine Tune Loss and Accuracy(lr=1e-4, bs=64)
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maxvit_tiny rw_224

Accuracy: 78.56%
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Fine-Tuned Model Accuracy

* The confusion matrix shows that there is no single category more likely to be classified incorrectly.
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Training a Lightweight DiNAT from Sratch

Train from Scratch Loss and Accuracy(lr=1e-3)
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* Training from sketch has worst performance (accuracy : 27.35%)



The plan for the remaining semester

. Optimizing the fine-tuned model by adding extra layers

. Conduct a more detailed analysis to compare the differences among
four models

- Write a comprehensive report



Thank You

Fine-Tuning Pretrained Image Transformer Models on
the iNaturalist Dataset: A Comparative Study

Zhengrong Gu, Yuhang Song
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