Fine-Tuning Pretrained Image Transformer Models on the iNaturalist Dataset: A Comparative Study

Zhengrong Gu, Yuhang Song

Phaeolus schweinitzii

Geastrum saccatum

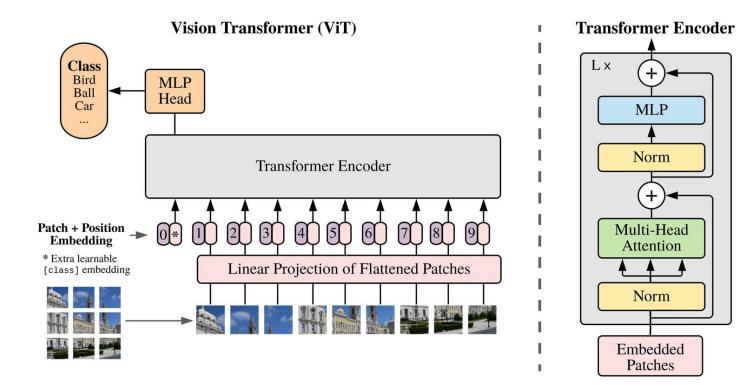
Lactarius alnicola

Introduction & Goal

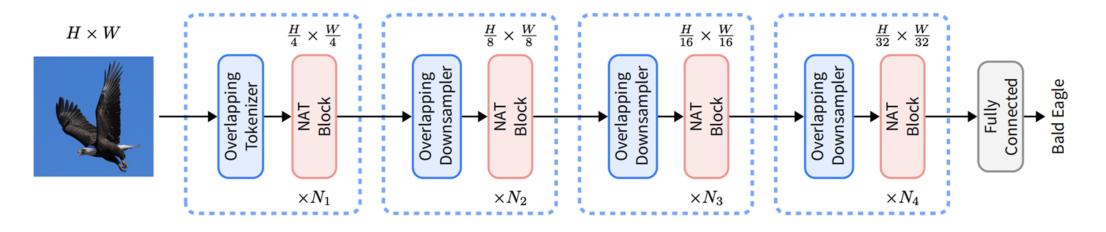
- Task: image classification using transformers
- Models:
 - Neighborhood Attention Transformer (NAT)
 - Dilated Neighborhood Attention Transformer (Di-NAT)
 - Dual Attention Vision Transformers (DaViT)
 - Multi-Axis Vision Transformer (MaxViT)
- Goal:
 - demonstrate how these four models work
 - compare the differences
 - evaluate these models using the dataset from iNaturalist 2017

Model Comparison and Performance Insights

 All the models are based on Vision Transformer, introduced by "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale"



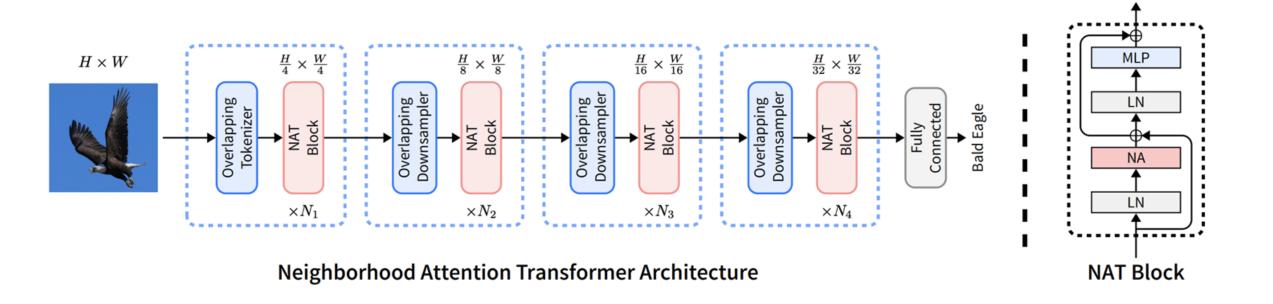
Model Comparison and Performance Insights Neighborhood Attention Transformer(NAT)



Neighborhood Attention Transformer Architecture

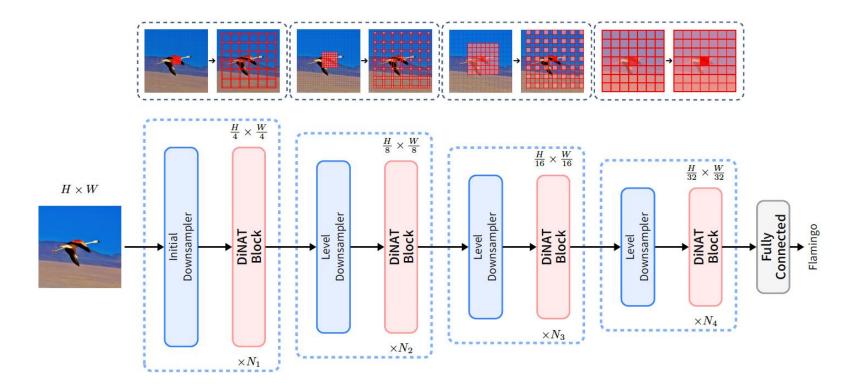
- NAT is transformer based on NA
- a convolutional downsampler + 4 sequential levels, each consisting of multiple NAT Blocks, which are transformer-like encoder layers.
- Between the levels, feature maps are downsampled to half their spatial size, while their depth is doubled.

Model Comparison and Performance Insights Neighborhood Attention Transformer(NAT)



• Each layer is comprised of a multi-headed neighborhood attention, a multilayered perceptron, Layer Norm before each module, and skip connections.

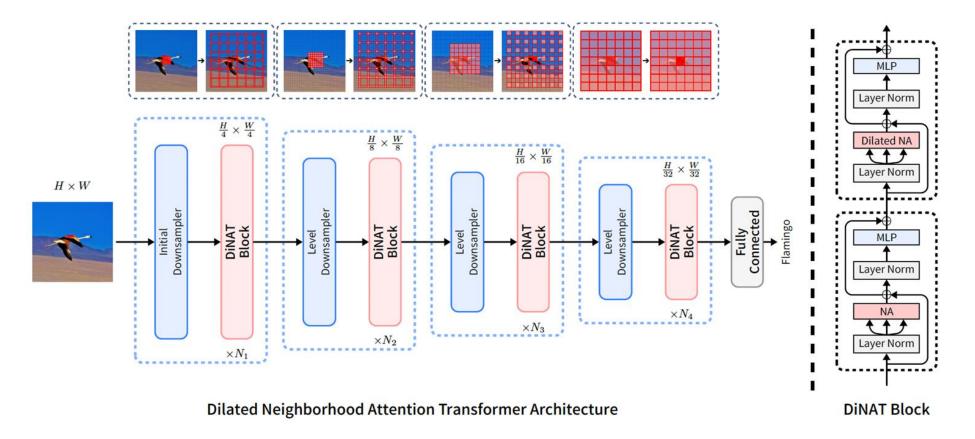
Model Comparison and Performance Insights Dilated Neighborhood Attention Transformer (DiNAT)



Dilated Neighborhood Attention Transformer Architecture

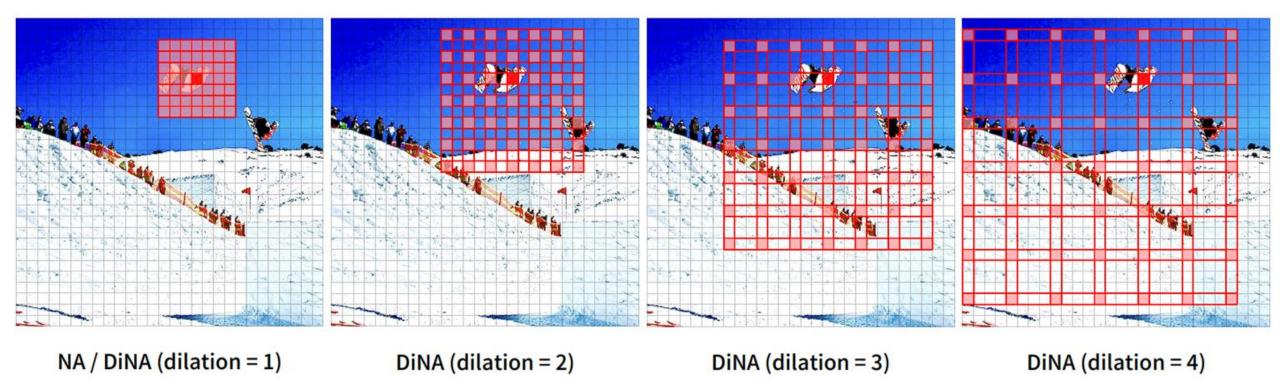
- Downsamples inputs to a quarter of their original spatial resolution
- Sends them through 4 layers of DiNA Transformer encoders

Model Comparison and Performance Insights Dilated Neighborhood Attention Transformer (DiNAT)



• DiNAT layers are similar to NAT, but it switches between local NA and sparse global DiNA at every other layer

Model Comparison and Performance Insights Dilated Neighborhood Attention Transformer (DiNAT)



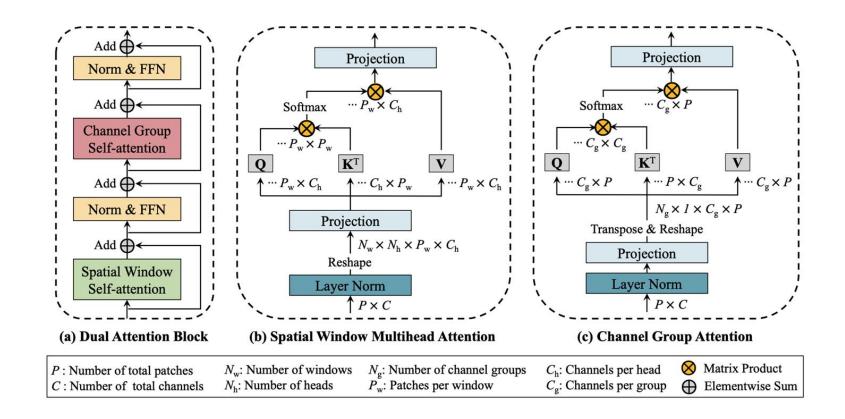
- An illustration of a single pixel's attention span in NA and DiNA.
- NA localizes attention to the pixel's nearest neighbors.
- DiNA extend NA's local attention to a less constrained sparse global attention.

NAT vs. DiNAT

- DiNATextends NAE by introducing a dilated attention mechanism attention is applied not only to neighboring regions within a fixed spatial range but also to regions that are further away.
- The dilation factor controls the distance between regions, with larger values allowing for a wider range of attention.

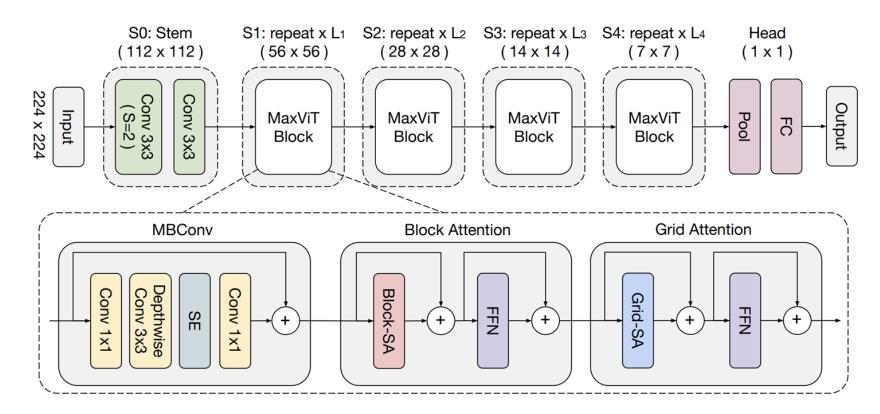
Model Comparison and Performance Insights Dual Attention Vision Transformers(DaViT)

• Compared with regular ViT, DaViT has dual attention layer: Channel Group Attention and Spatial Window Multihead Attention



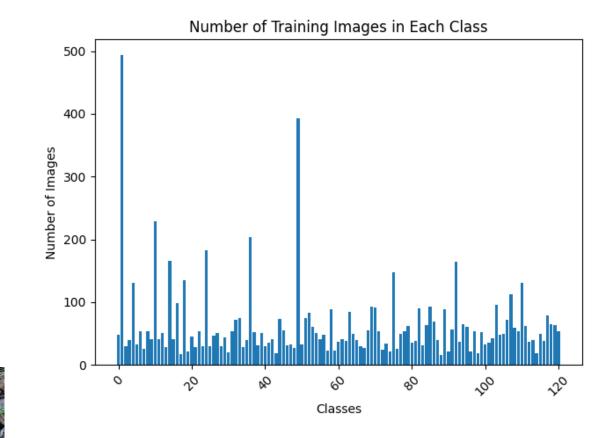
Multi-Axis Vision Transformer(MaxViT)

• MaxViT: simply repeating the basic building block over multiple stages.



iNaturalist 2017 dataset

- We utilize the fungi subset of the iNaturalist 2017 dataset
- 7,606 images, distributed across 121 classes
- Highly unbalanced data

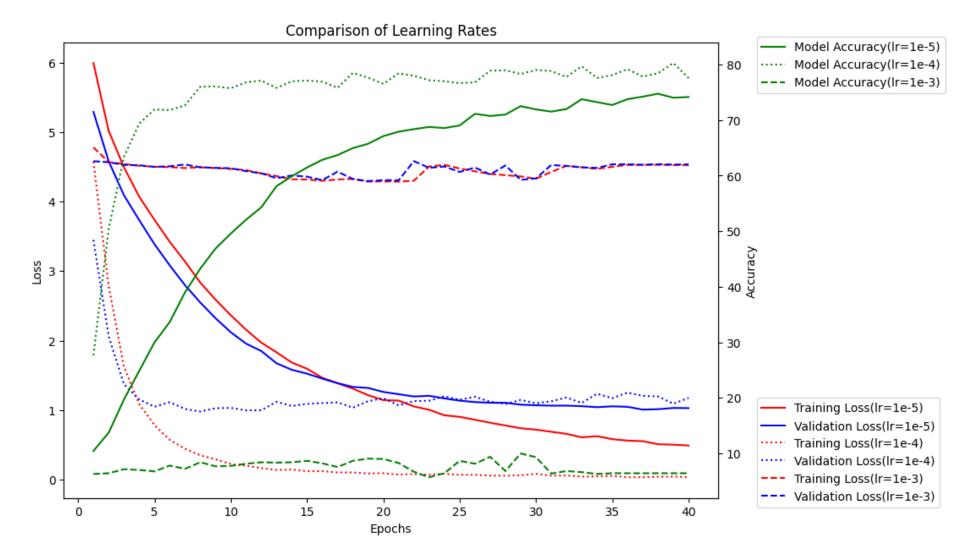


Lactarius alnicola

We are approaching State-of-the-Art Accuracy

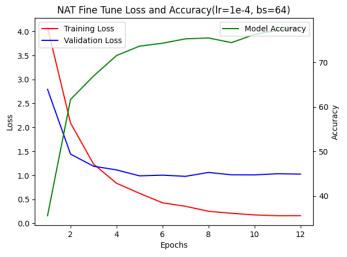
Rank	Model	Top 1 ↑ Top 5 Accuracy Accuracy	Top 3 Error	Extra Training Data	Paper	Code	Result	Year	Tags 🗹
1	MAE (ViT-H, 448)	83.4		×	Masked Autoencoders Are Scalable Vision Learners	Q	÷	2021	
2	MetaFormer (MetaFormer-2,384,extra_info)	83.4%		\checkmark	MetaFormer: A Unified Meta Framework for Fine-Grained Recognition	0	\rightarrow	2022	
3	MetaFormer (MetaFormer-2,384)	80.4%		\checkmark	MetaFormer: A Unified Meta Framework for Fine-Grained Recognition	0	Þ	2022	
4	FixSENet-154	75.4		\checkmark	Fixing the train-test resolution discrepancy	0	Ð	2019	
5	SEB+EfficientNet-B5	72.3		×	On the Eigenvalues of Global Covariance Pooling for Fine-grained Visual Recognition	ņ	÷	2022	
Our Model: Fine Tuned DaViT		80.93%		\checkmark	Fine Tune based on davit_tiny.msft_in1k			Toda	У

Fine-Tuning Parameter Exploration



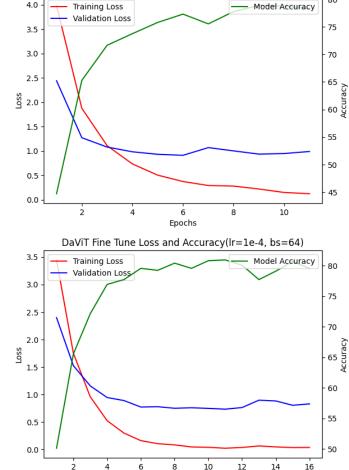
Fine-Tuning comparation on different model

4.0



Train based on natmini-in1k-224

Accuracy: 75.28%



Epochs

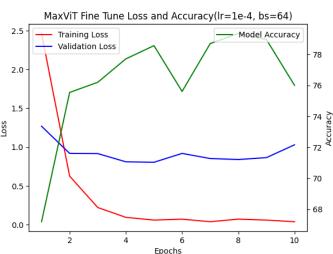
DiNAT Fine Tune Loss and Accuracy(Ir=1e-4, bs=64)

80

Neighborhood **Attention Transformer** Train based on natmini-in1k-224 Accuracy: 77.32% **Dual Attention ViT**

Train based on davit tiny.msft in1k

Accuracy: 80.93%



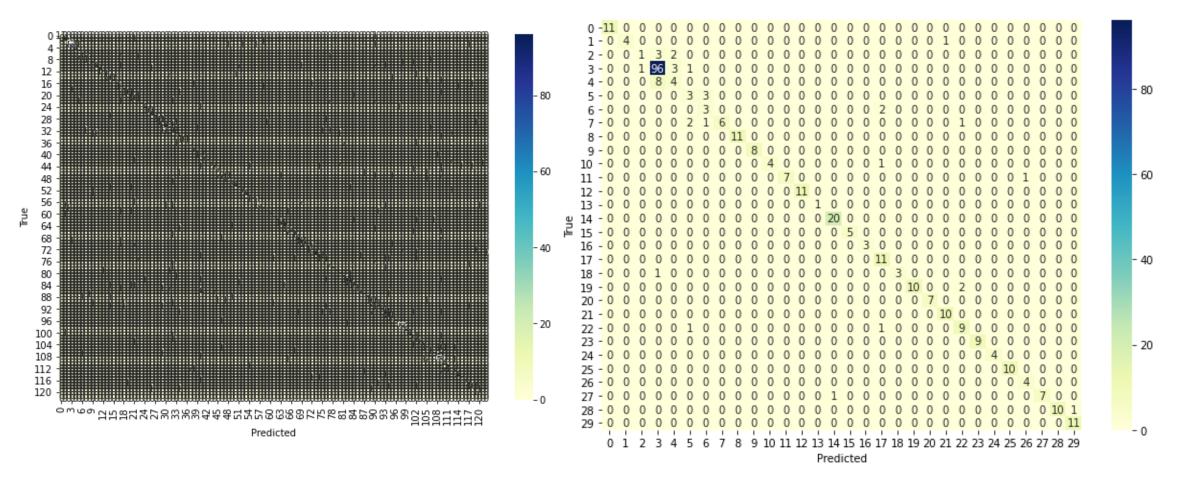
Train based on maxvit tiny rw 224

Multi-Axis ViT

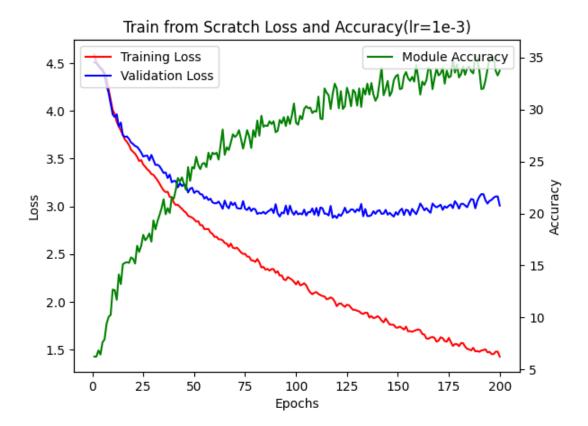
Accuracy: 78.56%

Fine-Tuned Model Accuracy

• The confusion matrix shows that there is no single category more likely to be classified incorrectly.



Training a Lightweight DiNAT from Sratch



• Training from sketch has worst performance (accuracy : 27.35%)

The plan for the remaining semester

- Optimizing the fine-tuned model by adding extra layers
- Conduct a more detailed analysis to compare the differences among four models
- Write a comprehensive report

Thank You

Fine-Tuning Pretrained Image Transformer Models on the iNaturalist Dataset: A Comparative Study

Zhengrong Gu, Yuhang Song