
CS599 Programming Massively Parallel Multiprocessors and Heterogeneous Systems

SSD-Backed PagedAttention
Extending KV Cache with GPUDirect Storage

Final Report

Team Members: Sakshi Sharma(phsakshi@bu.edu), Yuhang Song(yuhangs@bu.edu)

Github Repository: SSD offloading

1. Problem Statement and Motivation

1.1 The Challenge: GPU Memory Constraints in LLM Serving

Large Language Model (LLM) serving systems face a critical bottleneck: GPU memory scarcity.
During the decoding phase of text generation, the Key-Value (KV) cache dominates memory
consumption. For modern models like LLaMA-70B with long context windows (128K+ tokens),
a single request can require gigabytes of KV cache storage. This creates severe limitations on:

• ​ Batch size: Fewer concurrent requests can be served
• ​ Context length: Longer conversations exhaust memory quickly
• ​ Reuse opportunities: Valuable cached computations are discarded prematurely

1.2 Current State: PagedAttention and CPU Offloading

vLLM’s PagedAttention architecture was a breakthrough in addressing memory fragmentation. It
stores KV tensors in non-contiguous, fixed-size blocks (“pages”), enabling:

• ​ Fine-grained memory allocation
• ​ Block-level reuse across requests (prefix caching)
• ​ Reduced internal fragmentation

However, the current system has a significant limitation: when GPU memory fills up, blocks are
offloaded to CPU memory only. This presents several challenges:

Current Flow:​

​ ​

​ ​ ​ Figure 1: Current CPU Offloading flow

https://github.com/CudaSudaWuda/project-cache-me-if-you-can/tree/vllm

Limitations of CPU-only offloading:

1. Limited capacity: CPU RAM is finite and expensive to scale

2. CPU overhead: Data transfers involve CPU memory copies and bandwidth

3. Cost: Adding more RAM requires expensive hardware upgrades

4. Scalability: Each machine has fixed RAM capacity

1.3 Our Proposal: SSD Storage Tier with GPU Direct Storage

We propose adding an SSD storage tier for KV cache blocks, leveraging NVIDIA GPU Direct
Storage (GDS) for efficient data movement:

Our Solution:

Figure 2: Proposed SSD Offloading architecture

1.4 Why SSD? Economic and Technical Rationale

Resource Cost (per TB) Capacity Scaling Hardware Changes

GPU ~$2000+ Very Limited New GPU required

CPU RAM ~$100-1000 Limited (slots) Motherboard constraints

NVMe SSD ~$50-100 Virtually unlimited Hot-swappable

Key benefits of SSD offloading:

1. ​ Cost efficiency: SSDs provide 10-100x more storage per dollar than GPU/CPU
memory

2. ​ Capacity: Expand to terabytes without hardware reconfiguration
3. ​ No GPU changes: Maximize existing GPU investment
4. ​ GDS advantage: Direct GPU-to-SSD transfers bypass CPU, reducing latency

1.5 Why PagedAttention is Ideal for SSD Integration

PagedAttention’s block-based architecture naturally aligns with SSD I/O characteristics:

• ​ Block granularity: KV blocks map directly to SSD block I/O operations
• ​ Sequential access patterns: Prefill and decoding access blocks sequentially
• ​ Reuse tracking: Block hashes enable efficient cache lookups

2. Overview of Our Solution

2.1 Architecture Overview

Our implementation introduces a complete SSD offloading subsystem within vLLM’s v1
architecture:

​ ​ Figure 3: Overall architecture of the SSD Offloading system

2.2 Data Flow

Store (GPU → SSD):
1. Request generates new KV cache blocks​
2. Scheduler identifies blocks to offload (excess blocks)​
3. OffloadingManager.prepare_store() allocates SSD blocks, evicts if needed​
4. KVConnectorMetadata carries store specs to worker​
5. GpuSsdOffloadingHandler.transfer_async() submits write job​
6. Worker thread: kvikio.CuFile.pwrite() transfers GPU→SSD​
7. Worker reports completion to scheduler​
8. OffloadingManager.complete_store() marks blocks as ready

Load (SSD → GPU):
1. New request needs previously computed KV cache​
2. Scheduler checks OffloadingManager.lookup() for hits​
3. OffloadingManager.prepare_load() protects blocks from eviction​
4. KVConnectorMetadata carries load specs to worker​
5. GpuSsdOffloadingHandler.transfer_async() submits read job​
6. Worker thread: kvikio.CuFile.pread() transfers SSD→GPU​
7. Request scheduled after transfer completion​
8. OffloadingManager.complete_load() releases eviction protection

2.3 Challenges Encountered

1.​ PyTorch Inference Mode Restrictions

Problem: PyTorch’s inference mode prevents in-place tensor modifications

Solution: Use direct CUDA memcpy via ctypes to bypass restrictions

def _cuda_memcpy(dst_ptr, src_ptr, size):​
​ """Direct CUDA memcpy to bypass inference mode"""​
​ cudart.cudaMemcpy(dst_ptr, src_ptr, size, cudaMemcpyDeviceToDevice)

2.​ Variable KV Cache Layouts

Problem: Different attention backends have different tensor layouts

Solution: Detect layout by probing backend’s get_kv_cache_shape()

test_shape = attn_backend.get_kv_cache_shape(num_blocks=1234, ...)​
if test_shape[0] == 2: # [2, num_blocks, ...]​
​ kv_dim_before_num_blocks = True​
else: # [num_blocks, ...]​
​ kv_dim_before_num_blocks = False

3.​ Block Size Alignment

Problem: SSD I/O is more efficient with larger blocks

Solution: Support configurable SSD block size as multiple of GPU block size

ssd_block_size = gpu_block_size * block_size_factor​
E.g., 4 GPU blocks (16 tokens each) = 1 SSD block (64 tokens)

4.​ Reference Counting During Transfers

Problem: Blocks being transferred cannot be evicted

Solution: ref_cnt tracking with -1 for “not ready” state

class BlockStatus:​
​ ref_cnt: int # -1 = not ready, 0 = ready, >0 = in use​
 ​ @property​
​ def is_ready(self) -> bool:​
 ​ return self.ref_cnt >= 0

2.4 Alternatives Considered

Alternative 1: Direct GPU-to-SSD without kvikio

Considered: Implementing GDS integration from scratch

Discarded: kvikio is tested, maintained by NVIDIA/RAPIDS, handles edge cases

Alternative 2: Synchronous I/O

Considered: Blocking transfers in the main worker loop

Discarded: Would stall GPU and reduce throughput significantly

Alternative 3: Memory-mapped files

Considered: mmap() with GPU access

Discarded: Doesn’t leverage GDS, still requires CPU page cache

3. Evaluation

3.1 Evaluation Setup

3.1.1 Hardware
We ran our experiments on an NVIDIA DGX Spark workstation equipped with a 20-core ARM
CPU and Blackwell-generation GPU. The system includes 128 GB of LPDDR5X coherent
unified memory, which allows both CPU and GPU to share the same memory space.

3.1.2 Model
After comparing several models, we selected the following two for our final evaluation:

1.​ Tiny Model: Llama-3.2-1B​
https://huggingface.co/meta-llama/Llama-3.2-1B​
This model is 2.47 GB, making it lightweight and easy to handle. Benchmarking with a
small model significantly reduces loading time and allows rapid iteration. This enabled us
to repeatedly rerun experiments under different environment configurations and
memory-limit settings to observe system behavior and stress-test our implementation.​
To simulate limited KV-cache availability, we constrained memory using the
--gpu-memory-utilization parameter, modeling conditions where the model weights
occupy most of GPU memory.

2.​ Large Model: DeepSeek-R1-Distill-Qwen-32B​
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B​
This model is 65.5 GB, and it was the largest model that could run reliably on the DGX
Spark without failure. We used it to recreate a realistic scenario where model weights
fully consume GPU memory, allowing us to verify whether the trends observed in the
small-model setting still hold at scale.

We also evaluated Qwen3-Next-80B-A3B-Instruct-FP8
(https://huggingface.co/Qwen/Qwen3-Next-80B-A3B-Instruct-FP8), which is slightly larger at
82.1 GB. However, this model failed during inference because additional overhead beyond raw
model size exceeded available GPU memory. As a result, we excluded it from full experimental
evaluation.

3.1.3 Workload
We use the ShareGPT dataset to simulate real user prompts. Specifically, we use the
sg_90k_part1.json subset from RyokoAI/ShareGPT52K on Hugging Face
(https://huggingface.co/datasets/RyokoAI/ShareGPT52K), which contains 90,000 real-world user
prompts for us to run the inference.

3.2 Overheading Test
The first goal is to verify that when the server has sufficient resources, GPU-only,
CPU-cache-enabled, and SSD-cache-enabled configurations achieve similar performance.
Although some overhead is expected for CPU/SSD offloading, the performance gap should
remain small.

We benchmark using the following command:

VLLM_LOG_STATS_INTERVAL=5 vllm bench kv-offload \
 --max-model-len 4096 \
 --model meta-llama/Llama-3.2-1B \
 --dataset-path ./sg_90k_part1.json \
 --dataset-name sharegpt \
 --num-prompts 4096 \
 --gpu-memory-utilization 0.5 \
 --cpu-num-blocks 65536 \
 --ssd-num-blocks 131072 \
 --ssd-cache-dir ./vllm_kv_cache

The model size is 2.6 GB, and we allocate 64 GB of total memory for vLLM inference. With
GPU memory sufficiently large, we expect all three configurations (GPU-only, CPU-cache,
SSD-cache) to show comparable performance.

The first figure shows Remaining Requests vs. Time, sampled every 2 seconds. All three
configurations exhibit nearly identical progress curves.

Figure 4: Remaining Requests Vs Time

The next figure displays average generated tokens per second, again showing that the three
implementations perform similarly.

Figure 5: Average generated tokens/second

Finally, the KV-cache hit-rate plot confirms our expectation: with ample GPU cache capacity,
all three configurations reach similar hit rates.​

Figure 6: KV cache hit rate

3.3 Testing Under Extremely Low GPU Memory
Next, we evaluate performance when GPU memory is extremely limited. We set
--gpu-memory-utilization=0.04, leaving less than 1 GB for GPU KV-cache — just
enough to load the model. This simulates running a model on a personal computer where GPU
memory is fully consumed by the model itself.

We also reduce CPU cache capacity to the minimum, mimicking unified-memory systems (e.g.,
Apple Silicon, DGX Spark with UMA), where additional CPU RAM is unavailable for KV
caching once GPU memory is exhausted.

Surprisingly, performance remains strong. The Remaining Requests vs. Time plot shows that
SSD-offload performs nearly as well as GPU-only, while CPU-offload is the slowest due to
intentionally restricted CPU cache capacity, which provides no benefit and adds overhead.

Figure 7: Remaining requests Vs Time

As expected, the GPU cache becomes fully occupied at the start of the run.

Figure 8: KV Cache usage

For SSD-offload, we observe the KV hit rate gradually increasing, peaking around ~6%.
Because CPU cache capacity was minimized, CPU-offload produces nearly 0% hit rate, as
expected.

Figure 9: External prefix cache hit rate

Disk I/O statistics further confirm that SSD-based KV cache is actively writing and
functioning correctly.

Figure 10: Disk I/O Utilization

3.4 Increasing CPU KV-Cache Capacity
In the previous setup, we limited CPU KV-cache to simulate unified-memory systems. However,
on traditional x86 systems, CPU and GPU have separate memory pools. We therefore repeat the
test but increase CPU KV-cache to 5 GB, matching the GPU cache limit.

Under this condition, GPU-only remains the fastest, CPU-cache is still the slowest, and
SSD-cache again sits between GPU and CPU in performance.

Figure 11: Waiting requests

The cache hit-rate explains this behavior: initially CPU and SSD caching behave similarly, but
once CPU reaches its 5 GB limit, SSD continues accumulating cache, leading to higher
long-term hit rate and better throughput.

Figure 12: External prefix cache hit rate

3.5 A More Realistic Server Scenario
Previously we restricted CPU KV-cache to 5 GB to mirror consumer-grade hardware. However,
in server environments it is more common to have limited GPU VRAM but abundant CPU
RAM.

Therefore, we relax CPU cache limits and match CPU cache size to the SSD cache size. In this
configuration, SSD-cache remains slightly faster than CPU-cache

Figure 13: Waiting requests

And their external cache hit-rates are nearly identical

Figure 14: External prefix cache hit rate

4. Discussion

4.1 Overall Assessment and Conclusion

The key contribution of our project is implementing an SSD-based KV cache. Building on
vLLM’s existing KV-cache manager, we extend CPU-level offloading to an SSD tier. Using
NVIDIA GPUDirect’s Python wrapper KvikIO, we enable direct DMA transfers between GPU
memory and NVMe SSDs for KV-block swapping. We also implement an LRU-based rotation
mechanism to efficiently manage SSD capacity when the cache becomes full.

We benchmark our system to evaluate its effectiveness. First, we test in a high-memory
environment and show that our SSD-based solution introduces minimal overhead. Next, under
extreme memory pressure with unified memory, we demonstrate that SSD offloading
significantly outperforms CPU caching. We then compare scenarios where SSD and CPU caches
have the same capacity and find that SSD remains faster. Finally, even when CPU memory is
plentiful, our SSD approach performs close to the CPU baseline, with comparable cache hit
rates.

4.2 Difficulties with the SparkDGX Environment
The NVIDIA DGX Spark we used is a very new hardware platform. Although unified memory
between GPU and CPU is promising, we encountered several challenges when setting up the
environment for vLLM. Full compilation fails because the build system does not clearly
distinguish between ARM and x86 environments, causing errors when compiling oneDNN
components. Since our modifications are limited to the Python layer, we used the precompiled
ARM binaries instead, which allowed us to modify and test our implementation.

Additionally, the default PyTorch version on the system is incompatible, but PyTorch built for
CUDA 13.0 works correctly. Some development and testing dependencies were also missing or
incompatible, but we managed to install everything necessary to run our workload. We
documented the detailed environment setup steps in our code repository so that others can
reproduce our results.

4.3 Future Work

4.3.1 Cross request and long term kv cache on SSD

Our current SSD-based KV-cache implementation depends on vLLM’s original KV-cache
manager, which does not support long-term or cross-request KV persistence. It primarily shares
KV blocks only across concurrently running requests. Supporting long-term KV on SSD would
enable more realistic workloads and improve reuse across multi-turn conversations.

4.3.2 Evaluation on the multi term dataset
Our current evaluation uses only the first prompt of each request, which puts our approach at a
disadvantage because it reduces opportunities for KV-cache reuse. A more meaningful
evaluation would involve multi-turn conversational datasets, especially code-generation
dialogues. These conversations are extremely long, and each new user query typically depends
on all prior context. Without a persistent KV cache, the model must recompute large portions of
the prefix. Running on such datasets would yield much higher cache hit rates, and in some cases,
our SSD-based solution may even outperform GPU-only caching.

5. Related Work
​
1. Kwon et al., “Efficient Memory Management for Large Language Model Serving with
PagedAttention.”​
Introduces block-level KV-cache management. But they do not provide a SSD swap policy.

2. Ren et al., “An I/O Characterizing Study of Offloading LLM Models and KV Caches to
NVMe SSD.”​
Characterize I/O when offloading model weights and KV-cache. But they are not based on paged
attention.

3. NVIDIA GPUDirect Storage ​
https://developer.nvidia.com/gpudirect​
We will implement the cache swapping with Nvidia GPU direct storage feature to transfer data
between GPU and SSD.

4. Mastering LLM Techniques: Inference Optimization​
https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization/​
Introduced the KV-cache mechanism and the importance of having this kind of cache in
inference.

6. Contributions
We analyzed the project proposal and discussed approaches to tackle the problem collaboratively.
Sakshi Sharma primarily contributed to the SSD-based KV-cache swapping implementation,
while Yuhang focused on benchmarking and evaluation using real-world datasets. We then
analyzed the results together and co-authored the final report based on our findings.

Code: latest changes with SSD changes and benchmarking - SSDOffloading

https://github.com/CudaSudaWuda/project-cache-me-if-you-can/tree/vllm

	SSD-Backed PagedAttention
	Extending KV Cache with GPUDirect Storage
	1. Problem Statement and Motivation
	1.1 The Challenge: GPU Memory Constraints in LLM Serving
	1.2 Current State: PagedAttention and CPU Offloading
	1.3 Our Proposal: SSD Storage Tier with GPU Direct Storage
	1.4 Why SSD? Economic and Technical Rationale
	1.5 Why PagedAttention is Ideal for SSD Integration

	2. Overview of Our Solution
	2.1 Architecture Overview
	2.2 Data Flow
	Store (GPU → SSD):
	Load (SSD → GPU):

	2.3 Challenges Encountered
	1.​PyTorch Inference Mode Restrictions
	2.​Variable KV Cache Layouts
	3.​Block Size Alignment
	4.​Reference Counting During Transfers

	2.4 Alternatives Considered
	Alternative 1: Direct GPU-to-SSD without kvikio
	Alternative 2: Synchronous I/O
	Alternative 3: Memory-mapped files

	3. Evaluation
	3.1 Evaluation Setup
	3.1.1 Hardware
	3.1.2 Model
	3.1.3 Workload

	3.2 Overheading Test
	3.3 Testing Under Extremely Low GPU Memory
	3.4 Increasing CPU KV-Cache Capacity
	3.5 A More Realistic Server Scenario

	4. Discussion
	4.1 Overall Assessment and Conclusion
	4.2 Difficulties with the SparkDGX Environment
	4.3 Future Work
	4.3.1 Cross request and long term kv cache on SSD
	4.3.2 Evaluation on the multi term dataset

	5. Related Work
	6. Contributions

