CS599 Programming Massively Parallel Multiprocessors and Heterogeneous Systems

SSD-Backed PagedAttention

Extending KV Cache with GPUDirect Storage
Final Report

Team Members: Sakshi Sharma(phsakshi@bu.edu), Yuhang Song(yuhangs@bu.edu)

Github Repository: SSD offloading
1. Problem Statement and Motivation

1.1 The Challenge: GPU Memory Constraints in LLM Serving

Large Language Model (LLM) serving systems face a critical bottleneck: GPU memory scarcity.
During the decoding phase of text generation, the Key-Value (KV) cache dominates memory
consumption. For modern models like LLaMA-70B with long context windows (128K+ tokens),
a single request can require gigabytes of KV cache storage. This creates severe limitations on:

* Batch size: Fewer concurrent requests can be served
* Context length: Longer conversations exhaust memory quickly

* Reuse opportunities: Valuable cached computations are discarded prematurely

1.2 Current State: PagedAttention and CPU Offloading

vLLM’s PagedAttention architecture was a breakthrough in addressing memory fragmentation. It
stores KV tensors in non-contiguous, fixed-size blocks (“pages”), enabling:

* Fine-grained memory allocation
» Block-level reuse across requests (prefix caching)

* Reduced internal fragmentation

However, the current system has a significant limitation: when GPU memory fills up, blocks are
offloaded to CPU memory only. This presents several challenges:

Current Flow:

GPU Memory | « CPU Memory « Limited by DRAM capacity
(KV Cache) (0ffload) « CPU involved in transfers

Figure 1: Current CPU Offloading flow

https://github.com/CudaSudaWuda/project-cache-me-if-you-can/tree/vllm

Limitations of CPU-only offloading:

1. Limited capacity: CPU RAM is finite and expensive to scale

2. CPU overhead: Data transfers involve CPU memory copies and bandwidth
3. Cost: Adding more RAM requires expensive hardware upgrades

4. Scalability: Each machine has fixed RAM capacity

1.3 Our Proposal: SSD Storage Tier with GPU Direct Storage

We propose adding an SSD storage tier for KV cache blocks, leveraging NVIDIA GPU Direct
Storage (GDS) for efficient data movement:

Our Solution:

GPU Memory | < CPU Memory | «= NVMe 55D
(KV Cache) (Optional) (Extended
Cache)
GPU Direct Storage t
1

=

(Bypass CPU entirely)
Figure 2: Proposed SSD Offloading architecture

1.4 Why SSD? Economic and Technical Rationale

Resource Cost (per TB) Capacity Scaling ~ Hardware Changes
GPU ~$2000+ Very Limited New GPU required
CPURAM ~$100-1000 Limited (slots) Motherboard constraints
NVMe SSD ~§$50-100 Virtually unlimited Hot-swappable

Key benefits of SSD offloading:

1. Cost efficiency: SSDs provide 10-100x more storage per dollar than GPU/CPU
memory
Capacity: Expand to terabytes without hardware reconfiguration

3. No GPU changes: Maximize existing GPU investment
GDS advantage: Direct GPU-to-SSD transfers bypass CPU, reducing latency

1.5 Why PagedAttention is Ideal for SSD Integration

PagedAttention’s block-based architecture naturally aligns with SSD I/O characteristics:

* Block granularity: KV blocks map directly to SSD block I/O operations
* Sequential access patterns: Prefill and decoding access blocks sequentially
* Reuse tracking: Block hashes enable efficient cache lookups

2. Overview of Our Solution

2.1 Architecture Overview

Our implementation introduces a complete SSD offloading subsystem within vVLLM’s vl
architecture:

/ VLLM Scheduler \

Offioading Manages
s LRUOMoadingManagar = Manages aviction palicy
« Tracks block locations (GPU ve 550) « Coordinates load'store operations

Ss5DBackend

» Block allocation on S50 tracki
= File offsel management + Freelst na

K Connector
Metadata

/ VLLM Worker \
Offloading Warker
* Routes ransfers to appropriate handiers * Tracks pending transfer jobs

S50Backend
* LUses kvikio for 350 tranafer using GRPUDIrect

» Agyne 10 with ThreadpoolExecutos
s Manages pre-allocated cache files

GDS NVMe SSD

{Cache Files)

Figure 3: Overall architecture of the SSD Offloading system

2.2 Data Flow

Store (GPU — SSD):

Request generates new KV cache blocks

Scheduler identifies blocks to offload (excess blocks)
OffloadingManager.prepare_store() allocates SSD blocks, evicts if needed
KVConnectorMetadata carries store specs to worker

. GpuSsdOffloadingHandler.transfer_async() submits write job

Worker thread: kvikio.CuFile.pwrite() transfers GPU—SSD

Worker reports completion to scheduler
OffloadingManager.complete_store() marks blocks as ready

00 NO UV A~ WN B

Load (SSD — GPU):

New request needs previously computed KV cache

Scheduler checks OffloadingManager.lookup() for hits
OffloadingManager.prepare_load() protects blocks from eviction
KVConnectorMetadata carries load specs to worker

. GpuSsdOffloadingHandler.transfer_async() submits read job
Worker thread: kvikio.CuFile.pread() transfers SSD—GPU
Request scheduled after transfer completion

. OffloadingManager.complete_load() releases eviction protection

00 NOUVT A WN PR

2.3 Challenges Encountered

1. PyTorch Inference Mode Restrictions
Problem: PyTorch’s inference mode prevents in-place tensor modifications
Solution: Use direct CUDA memcpy via ctypes to bypass restrictions

def _cuda_memcpy(dst_ptr, src_ptr, size):
"""Direct CUDA memcpy to bypass inference mode
cudart.cudaMemcpy(dst_ptr, src_ptr, size, cudaMemcpyDeviceToDevice)

mon

2. Variable KV Cache Layouts
Problem: Different attention backends have different tensor layouts
Solution: Detect layout by probing backend’s get kv cache shape()

test_shape = attn_backend.get_kv_cache shape(num_blocks=1234, ...)
if test shape[0] == 2: # [2, num blocks, ...]
kv_dim_before_num blocks = True
else: # [num blocks, ...]
kv_dim_before_num_blocks = False

3. Block Size Alignment
Problem: SSD I/O is more efficient with larger blocks
Solution: Support configurable SSD block size as multiple of GPU block size

ssd_block_size = gpu_block_size * block_size_factor
E.g., 4 GPU blocks (16 tokens each) = 1 SSD block (64 tokens)

4. Reference Counting During Transfers
Problem: Blocks being transferred cannot be evicted
Solution: ref cnt tracking with -1 for “not ready” state

class BlockStatus:
ref_cnt: int # -1 = not ready, 6 = ready, >0 = in use

@property
def is ready(self) -> bool:
return self.ref _cnt >= 0

2.4 Alternatives Considered

Alternative 1: Direct GPU-to-SSD without kvikio

Considered: Implementing GDS integration from scratch

Discarded: kvikio is tested, maintained by NVIDIA/RAPIDS, handles edge cases
Alternative 2: Synchronous I/O

Considered: Blocking transfers in the main worker loop

Discarded: Would stall GPU and reduce throughput significantly

Alternative 3: Memory-mapped files

Considered: mmap() with GPU access

Discarded: Doesn’t leverage GDS, still requires CPU page cache

3. Evaluation

3.1 Evaluation Setup

3.1.1 Hardware

We ran our experiments on an NVIDIA DGX Spark workstation equipped with a 20-core ARM
CPU and Blackwell-generation GPU. The system includes 128 GB of LPDDRSX coherent
unified memory, which allows both CPU and GPU to share the same memory space.

3.1.2 Model

After comparing several models, we selected the following two for our final evaluation:

1. Tiny Model: Llama-3.2-1B
https://huggingface.co/meta-llama/Llama-3.2-1B
This model is 2.47 GB, making it lightweight and easy to handle. Benchmarking with a
small model significantly reduces loading time and allows rapid iteration. This enabled us
to repeatedly rerun experiments under different environment configurations and
memory-limit settings to observe system behavior and stress-test our implementation.
To simulate limited KV-cache availability, we constrained memory using the
--gpu-memory-utilization parameter, modeling conditions where the model weights
occupy most of GPU memory.

2. Large Model: DeepSeek-R1-Distill-Qwen-32B
https://huggingface.co/deepseek-ai/DeepSeek-R 1-Distill-Qwen-32B
This model is 65.5 GB, and it was the largest model that could run reliably on the DGX
Spark without failure. We used it to recreate a realistic scenario where model weights
fully consume GPU memory, allowing us to verify whether the trends observed in the
small-model setting still hold at scale.

We also evaluated Qwen3-Next-80B-A3B-Instruct-FP8
(https://huggingface.co/Qwen/Qwen3-Next-80B-A3B-Instruct-FPS8), which is slightly larger at
82.1 GB. However, this model failed during inference because additional overhead beyond raw
model size exceeded available GPU memory. As a result, we excluded it from full experimental
evaluation.

3.1.3 Workload

We use the ShareGPT dataset to simulate real user prompts. Specifically, we use the

sg_ 90k partl.json subset from RyokoAI/ShareGPT52K on Hugging Face
(https://huggingface.co/datasets/RyokoAl/ShareGPT52K), which contains 90,000 real-world user
prompts for us to run the inference.

3.2 Overheading Test

The first goal is to verify that when the server has sufficient resources, GPU-only,
CPU-cache-enabled, and SSD-cache-enabled configurations achieve similar performance.
Although some overhead is expected for CPU/SSD offloading, the performance gap should
remain small.

We benchmark using the following command:

VLLM_LOG_STATS_INTERVAL=5 vllm bench kv-offload \
--max-model-len 4096 \
--model meta-1llama/Llama-3.2-1B \
--dataset-path ./sg 90k partl.json \
--dataset-name sharegpt \
--num-prompts 4096 \
--gpu-memory-utilization 0.5 \
--cpu-num-blocks 65536 \
--ssd-num-blocks 131072 \
--ssd-cache-dir ./v11lm_kv_cache

The model size is 2.6 GB, and we allocate 64 GB of total memory for vLLM inference. With
GPU memory sufficiently large, we expect all three configurations (GPU-only, CPU-cache,
SSD-cache) to show comparable performance.

The first figure shows Remaining Requests vs. Time, sampled every 2 seconds. All three
configurations exhibit nearly identical progress curves.

runtime/waiting_reqs

— ssd_offload = gpu_only

3000
2000

1000

Step
]

Figure 4: Remaining Requests Vs Time

The next figure displays average generated tokens per second, again showing that the three
implementations perform similarly.

runtime/avg_generation_tok_s
— ssd_offload = gpu_only
6000
5000
4000
3000

2000

1000
St

Figure 5: Average generated tokens/second

Finally, the KV-cache hit-rate plot confirms our expectation: with ample GPU cache capacity,
all three configurations reach similar hit rates.

runtime/prefix_cache_hit_rate_pct
— ssd_offload = gpu_only

Step

Figure 6: KV cache hit rate

3.3 Testing Under Extremely Low GPU Memory

Next, we evaluate performance when GPU memory is extremely limited. We set
--gpu-memory-utilization=0.04, leaving less than 1 GB for GPU KV-cache — just
enough to load the model. This simulates running a model on a personal computer where GPU
memory is fully consumed by the model itself.

We also reduce CPU cache capacity to the minimum, mimicking unified-memory systems (e.g.,
Apple Silicon, DGX Spark with UMA), where additional CPU RAM is unavailable for KV
caching once GPU memory is exhausted.

Surprisingly, performance remains strong. The Remaining Requests vs. Time plot shows that
SSD-offload performs nearly as well as GPU-only, while CPU-offload is the slowest due to
intentionally restricted CPU cache capacity, which provides no benefit and adds overhead.

runtime/waiting_reqs

— ssd_offload — gpu_only
4000 =
3000
2000
1000
st
0 . ep
0 50 100 150
Figure 7: Remaining requests Vs Time
As expected, the GPU cache becomes fully occupied at the start of the run.
runtime/kv_cache_usage_pct
— ssd_offload — gpu_only
100 F y
80
60
40
20
Step
0 50 100 150

Figure 8: KV Cache usage

For SSD-offload, we observe the KV hit rate gradually increasing, peaking around ~6%.
Because CPU cache capacity was minimized, CPU-offload produces nearly 0% hit rate, as
expected.

runtime/external_prefix_cache_hit_rate_pct

— ssd_offload
5
4
3
2
1
0 Step
0 50 100 150

Figure 9: External prefix cache hit rate

Disk 1/0 statistics further confirm that SSD-based KV cache is actively writing and
functioning correctly.

Disk I/0 Utilization (MB)
— ssd_offload MB read from nvmeOn1p2 == ssd_offload MB written to nvmeOn1p2

— gpu_only MB read from nvmeOn1p2 == gpu_only MB written to nvmeOn1p2
60000 $Pldad

50000 -7

-
-
PRae
-~
-

40000

30000 ’

-
-

20000 -

.-
-
Pt
e
P

10000
Pt Time (minutes)

2 4 6 8 10 12

Figure 10: Disk I/O Utilization

3.4 Increasing CPU KV-Cache Capacity

In the previous setup, we limited CPU KV-cache to simulate unified-memory systems. However,
on traditional x86 systems, CPU and GPU have separate memory pools. We therefore repeat the
test but increase CPU KV-cache to 5 GB, matching the GPU cache limit.

Under this condition, GPU-only remains the fastest, CPU-cache is still the slowest, and
SSD-cache again sits between GPU and CPU in performance.

runtime/waiting_reqs
— ssd_offload — gpu_only
4000 =

3000
2000

1000

~—Step

0 20 40 60 80 100 120 140

Figure 11: Waiting requests

The cache hit-rate explains this behavior: initially CPU and SSD caching behave similarly, but
once CPU reaches its 5 GB limit, SSD continues accumulating cache, leading to higher
long-term hit rate and better throughput.

runtime/external_prefix_cache_hit_rate_pct
— ssd_offload

A
2 RSN \,
1

Step

Figure 12: External prefix cache hit rate

3.5 A More Realistic Server Scenario

Previously we restricted CPU KV-cache to 5 GB to mirror consumer-grade hardware. However,
in server environments it is more common to have limited GPU VRAM but abundant CPU
RAM.

Therefore, we relax CPU cache limits and match CPU cache size to the SSD cache size. In this
configuration, SSD-cache remains slightly faster than CPU-cache

runtime/waiting_reqs
— ssd_offload — gpu_only
4000 ==

3000
2000

1000
~Step

0 20 40 60 80 100 120 140

Figure 13: Waiting requests

And their external cache hit-rates are nearly identical

runtime/external_prefix_cache_hit_rate_pct

— ssd_offload
6 ‘
J\/\J\ 4
5 M
\V2d
' \F_A A
\ 4
5 _\;HI,/»\(I’“

0 20 40 60 80 100 120 140

Step

Figure 14: External prefix cache hit rate

4. Discussion

4.1 Overall Assessment and Conclusion

The key contribution of our project is implementing an SSD-based KV cache. Building on
vLLM'’s existing KV-cache manager, we extend CPU-level offloading to an SSD tier. Using
NVIDIA GPUDirect’s Python wrapper KviklO, we enable direct DMA transfers between GPU
memory and NVMe SSDs for KV-block swapping. We also implement an LRU-based rotation
mechanism to efficiently manage SSD capacity when the cache becomes full.

We benchmark our system to evaluate its effectiveness. First, we test in a high-memory
environment and show that our SSD-based solution introduces minimal overhead. Next, under
extreme memory pressure with unified memory, we demonstrate that SSD offloading
significantly outperforms CPU caching. We then compare scenarios where SSD and CPU caches
have the same capacity and find that SSD remains faster. Finally, even when CPU memory is
plentiful, our SSD approach performs close to the CPU baseline, with comparable cache hit
rates.

4.2 Difficulties with the SparkDGX Environment

The NVIDIA DGX Spark we used is a very new hardware platform. Although unified memory
between GPU and CPU is promising, we encountered several challenges when setting up the
environment for vLLM. Full compilation fails because the build system does not clearly
distinguish between ARM and x86 environments, causing errors when compiling oneDNN
components. Since our modifications are limited to the Python layer, we used the precompiled
ARM binaries instead, which allowed us to modify and test our implementation.

Additionally, the default PyTorch version on the system is incompatible, but PyTorch built for
CUDA 13.0 works correctly. Some development and testing dependencies were also missing or
incompatible, but we managed to install everything necessary to run our workload. We
documented the detailed environment setup steps in our code repository so that others can
reproduce our results.

4.3 Future Work

4.3.1 Cross request and long term kv cache on SSD

Our current SSD-based KV-cache implementation depends on vLLM’s original KV-cache
manager, which does not support long-term or cross-request KV persistence. It primarily shares
KV blocks only across concurrently running requests. Supporting long-term KV on SSD would
enable more realistic workloads and improve reuse across multi-turn conversations.

4.3.2 Evaluation on the multi term dataset

Our current evaluation uses only the first prompt of each request, which puts our approach at a
disadvantage because it reduces opportunities for KV-cache reuse. A more meaningful
evaluation would involve multi-turn conversational datasets, especially code-generation
dialogues. These conversations are extremely long, and each new user query typically depends
on all prior context. Without a persistent KV cache, the model must recompute large portions of
the prefix. Running on such datasets would yield much higher cache hit rates, and in some cases,
our SSD-based solution may even outperform GPU-only caching.

5. Related Work

1. Kwon et al., “Efficient Memory Management for Large Language Model Serving with
PagedAttention.”
Introduces block-level KV-cache management. But they do not provide a SSD swap policy.

2. Ren et al., “An I/0 Characterizing Study of Offloading LLLM Models and KV Caches to
NVMe SSD.”

Characterize I/0O when offloading model weights and KV-cache. But they are not based on paged
attention.

3. NVIDIA GPUDirect Storage

https://developer.nvidia.com/gpudirect

We will implement the cache swapping with Nvidia GPU direct storage feature to transfer data
between GPU and SSD.

4. Mastering LLM Techniques: Inference Optimization
https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization/
Introduced the KV-cache mechanism and the importance of having this kind of cache in
inference.

6. Contributions

We analyzed the project proposal and discussed approaches to tackle the problem collaboratively.
Sakshi Sharma primarily contributed to the SSD-based KV-cache swapping implementation,
while Yuhang focused on benchmarking and evaluation using real-world datasets. We then
analyzed the results together and co-authored the final report based on our findings.

Code: latest changes with SSD changes and benchmarking - SSDOffloading

https://github.com/CudaSudaWuda/project-cache-me-if-you-can/tree/vllm

	SSD-Backed PagedAttention
	Extending KV Cache with GPUDirect Storage
	1. Problem Statement and Motivation
	1.1 The Challenge: GPU Memory Constraints in LLM Serving
	1.2 Current State: PagedAttention and CPU Offloading
	1.3 Our Proposal: SSD Storage Tier with GPU Direct Storage
	1.4 Why SSD? Economic and Technical Rationale
	1.5 Why PagedAttention is Ideal for SSD Integration

	2. Overview of Our Solution
	2.1 Architecture Overview
	2.2 Data Flow
	Store (GPU → SSD):
	Load (SSD → GPU):

	2.3 Challenges Encountered
	1.​PyTorch Inference Mode Restrictions
	2.​Variable KV Cache Layouts
	3.​Block Size Alignment
	4.​Reference Counting During Transfers

	2.4 Alternatives Considered
	Alternative 1: Direct GPU-to-SSD without kvikio
	Alternative 2: Synchronous I/O
	Alternative 3: Memory-mapped files

	3. Evaluation
	3.1 Evaluation Setup
	3.1.1 Hardware
	3.1.2 Model
	3.1.3 Workload

	3.2 Overheading Test
	3.3 Testing Under Extremely Low GPU Memory
	3.4 Increasing CPU KV-Cache Capacity
	3.5 A More Realistic Server Scenario

	4. Discussion
	4.1 Overall Assessment and Conclusion
	4.2 Difficulties with the SparkDGX Environment
	4.3 Future Work
	4.3.1 Cross request and long term kv cache on SSD
	4.3.2 Evaluation on the multi term dataset

	5. Related Work
	6. Contributions

