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1 – Introduction 

Matrix multiplication is a fundamental operation in various fields of science and engineering. It is especially important as 

a basic operation in today's machine learning. Optimizing and improving matrix multiplication operations is meaningful 

and necessary. In this project, we start with the triple-for loop matrix multiplication as a baseline, implement and optimize 

the Strassen algorithm, and analyze its performance. 

2 – Descrition of the algorithm 

2.1 Baseline: Triple-for loop matrix multiplication with OpenMP and Blocking enabled 

The most typical calculation method for matrix multiplication is the triple-for loop, as shown below. It is simple and 

straightforward. 

  for (i = 0; i < length; i++) { 

    for (j = 0; j < length; j++) { 

      sum = IDENT; 

      for (k = 0; k < length; k++) { 

        sum += a0[i*length+k] * b0[k*length+j]; 

      } 

      c0[i*length+j] += sum; 

    } 

  } 

As we did in the lab, a minor adjustment to improve performance is to swap the loop order from ijk to kij, as shown 

below. 

  for (k = 0; k < length; k++) { 

    for (i = 0; i < length; i++) { 

      r = a0[i*length+k]; 

      for (j = 0; j < length; j++) { 

        c0[i*length+j] += r*b0[k*length+j]; 

      } 

    } 

  } 

To further improve performance, we can implement blocking. As demonstrated in the lab, blocking optimizes the memory 

access pattern by utilizing cache locality. 

  { 

    for (k = 0; k < row_length; k++) { 

      for (i = 0; i < row_length; i++) { 

        r = a0[i*row_length+k]; 

        #pragma omp for 

        for (j = 0; j < row_length; j++) 

          c0[i*row_length+j] += r*b0[k*row_length+j];   
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      } 

    } 

  } 

In Lab 6, we implemented OpenMP for the blocking triple-for loop matrix multiplication to further enhance performance. 

#pragma omp parallel shared(a0,b0,c0,row_length) private(i,j,k,r) 

  { 

    for (k = 0; k < row_length; k++) { 

      for (i = 0; i < row_length; i++) { 

        r = a0[i*row_length+k]; 

        #pragma omp for 

        for (j = 0; j < row_length; j++) 

          c0[i*row_length+j] += r*b0[k*row_length+j]; 

      } 

    } 

  } 

We added pragma to utilize OpenMP and run it in parallel within the outer loop.  

In this project, we use the above optimal version as our baseline. Our primary goal is to compare the performance of our 

Strassen algorithm with this baseline. During the computation of the Strassen algorithm, we need to recursively split the 

matrix into smaller ones. However, at some point, when the matrix is small enough, the Strassen algorithm is no longer 

efficient, and we need to switch to triple-for loop matrix multiplication. We will use this baseline matrix multiplication for 

that purpose. 

2.2 The Strassen Algorithm 

Compared to the 𝑂(𝑛3) time complexity of the triple-for loop algorithm, the Strassen algorithm reduces the time 

complexity to  𝑂(𝑛2.81). It reduces the matrix multiplication to 7 multiplications and 18 additions. And the algorithm 

works recursively. 

When can calculate the matrix multiplication 

𝐶 = 𝐴𝐵 

we will split both A and B into four smaller equal-sized matrices: 

𝐴 = (
𝐴11 𝐴12

𝐴21 𝐴22
) , 𝐵 = (

𝐵11 𝐵12

𝐵21 𝐵22
) 

Then, we calculate the following seven matrices using the smaller matrices above: 

𝑃1 = (𝐴11 + 𝐴22)(𝐵11 + 𝐵22) 

𝑃2 = (𝐴21 + 𝐴22)𝐵11 

𝑃3 = 𝐴11(𝐵12 − 𝐵22) 

𝑃4 = 𝐴22(𝐵21 − 𝐵11) 

𝑃5 = (𝐴11 + 𝐴12)𝐵22 

𝑃6 = (𝐴21 − 𝐴11)(𝐵11 + 𝐵12) 

𝑃7 = (𝐴12 − 𝐴22)(𝐵21 + 𝐵22) 

After obtaining the seven intermediate matrices above, we can calculate the components of matrix C as follows: 

𝐶11 = 𝑃1 + 𝑃4 − 𝑃5 + 𝑃7 



𝐶21 = 𝑃2 + 𝑃4 

𝐶12 = 𝑃3 + 𝑃5 

𝐶22 = 𝑃1 + 𝑃3 − 𝑃2 + 𝑃6 

Then, we can combine the four matrices to yield the final result: 

𝐶 = (
𝐶11 𝐶12

𝐶21 𝐶22
) 

The Strassen algorithm works recursively. However, the Strassen algorithm is not efficient for smaller matrices. 

Therefore, there is a breakpoint at which the recursion is stopped, and a well-optimized triple-for loop matrix 

multiplication is used instead. 

3 – Implementation and Design 

3.1 Code structure 

The base file is taken from Lab 6, specifically the OpenMP matrix multiplication section. It contains a nice structure for 

timing as well as testing on different matrix sizes. However, as this is a large project, it is unwise to include everything in 

a single file. To address this, I implemented a CMake build framework and added unit tests. The project file structure 

looks like this: 

$ tree 

. 

├── CMakeLists.txt 

├── LICENSE 

├── README.md 

├── src 

│   ├── main.c 

│   ├── matrix.c 

│   ├── matrix.h 

│   ├── mmm.c 

│   ├── mmm.h 

│   ├── strassen.c 

│   ├── strassen.h 

│   ├── strassen_simd.c 

│   ├── strassen_simd.h 

│   ├── timer.c 

│   └── timer.h 

└── tests 

    ├── compare_time.c 

    ├── test_matrix.c 

    ├── test_mmm.c 

    ├── test_strassen.c 

    ├── test_strassen_simd.c 

    └── test_timer.c 

To build this project, you can simply use CMake and Make commands without worrying about which files to compile or 

which compile flags to use. Simply navigate to the directory of this project and use the following commands to compile: 

mkdir -p build && cd build 



cmake .. 

make -j 

All the binaries will be compiled into the current build folder. 

I used unit tests to verify the correctness of the project. The unit tests use the standard CTest and should be recognized by 

any IDE. To run all the tests in the command line, use "make test". 

Although the timer-related code is provided by the lab, I modified the code structure and moved it to a separate file, 

timer.h. I also added a small test, test_timer.c, to verify its functionality. 

For basic matrix operations, like creating/deleting matrices, initializing matrices with zeros, sequences or random 

numbers, and matrix addition and subtraction, I took the base code from the lab and completed the missing functions in 

matrix.h. I also added matrix comparison functions and matrix comparisons with tolerance to help determine whether 

two matrices are equal. I added the file test_matrix.c to test every function and ensure the correctness of these basic 

matrix operations. 

Then, I implemented the triple-for loop matrix multiplication in mmm.h. It contains the kij for loop, as well as the blocking 

and OpenMP versions. I used test_matrix.c to measure correctness. To verify the correctness of matrix multiplication, I 

created a gold matrix multiplication using the triple-for loop without any optimization. I compared all the matrix 

multiplication results with this golden reference. For most of the triple-for loop optimizations, the precision remains 

unchanged, passing the unit test check with a tolerance of 5%. However, it is somewhat surprising that the kij for loop 

with OpenMP enabled has significant precision loss. It has about a 15% precision loss at some elements. I manually 

checked the results on a small matrix, and there is no error in the computation itself. This is mainly caused by the change 

in the order of floating-point number computations, which leads to precision loss. 

Then, I followed the definition of the Strassen algorithm to write strassen.h and also measured its correctness in 

test_strassen.c. After verifying correctness, I used the unit test compare_time.c to measure performance. 

Lastly, I optimized the Strassen algorithm by applying the AVX256 intrinsics to matrix multiplication in 

strassen_simd.h and verified the correctness in test_strassen_simd.c. I will discuss the details later in this report. 

All the updated code can be found in my GitHub repository 

https://github.com/Souukou/bu_ec527_strassen_matrix_multiplication. 

4 – Strassen Algorithm and Experiment 

In this section, I will describe how I implemented the Strassen algorithm and what I did to improve its performance. I 

measured the performance using an AMD Ryzen 9 5950X 16-Core Processor. It has a 32KB L1 cache for each core, and a 

64MB L3 cache in total for all cores. I will measure the performance with the OpenMP thread setting at 32. Additionally, 

I am measuring the size of matrices that can fit into the L3 cache as well as those that do not fit into it. 

It is worth mentioning that all the tables and figures are in seconds. I am not calculating or plotting out the cycles per 

element (CPE), as in a multithreaded program, multiple cores are running at different clock speeds and accumulating 

cycles at different rates. Thus, it would be meaningless to measure the cycles. 

4.1 Plain Strassen Algorithm  

Initially, I strictly followed the definition of the Strassen algorithm to implement the Strassen algorithm. I created a set of 

small matrices 𝐴11, 𝐴12 … 𝐵11 … 𝐶22, as well as a list of intermediate matrices 𝑃1, 𝑃2 … 𝑃7, and two temporary matrices for 

addition. Then, I copied the data from the original matrices to the smaller new matrices 𝐴11, 𝐴12 … 𝐵11 … 𝐶22, computed 

the intermediate results recursively, and combined them together before writing them back to matrix C. 

Here is the performance of the plain Strassen algorithm. 



 

Table 1. Comparison of Strassen Algorithm with Other MM Algorithms from Lab 6 

 

Figure 1. Comparison of Strassen Algorithm with Other MM Algorithms from Lab 6 

The Strassen algorithm performance results are shown in the last column. We can see that, compared to the most basic ijk 

or kji approaches, it has a significant improvement, with about a 5.8 times speedup. However, when compared to the 

fastest result we obtained from the previous lab, which used the kij triple loop with blocking and OpenMP, the Strassen 

algorithm is noticeably slower. 

4.2 Strassen Algorithm with SIMD Optimization 

We learned to use SIMD intrinsic to optimize matrix transposition this semester. Similarly, I implemented AVX256 

intrinsic to optimize matrix computation in this algorithm, including matrix multiplication, addition, and subtraction. This 

is implemented in strassen_simd.h. 

The performance data is shown below. 

rowlen  kij  kij_omp  kij_block_omp  strassen

160 0.007604 0.002555 0.006893 0.008827

208 0.01664 0.003695 0.001907 0.002354

320 0.05969 0.01133 0.008655 0.01286

496 0.218 0.0377 0.02132 0.03104

736 0.7067 0.1056 0.06943 0.144

1040 1.99 0.2712 0.2214 0.5214

1408 4.934 0.6517 0.5246 0.9386

1840 11 1.341 1.134 1.68

2336 22.5 2.668 2.286 4.866

2896 42.85 4.673 4.262 7.306



 

Table 2. Comparison of SIMD Strassen Algorithm with Other MM Algorithms 

 

Figure 2. Comparison of SIMD Strassen Algorithm with Other MM Algorithms 

The Strassen algorithm with AVX256 intrinsics enabled, as shown in the last column, demonstrates that after this 

optimization, the Strassen algorithm can outperform the fastest algorithm we have. 

4.3 A Further Exploration on Strassen Algorithm 

4.3.1 An Attempt to Implement Matrix View to Eliminate Memory Copies 

One reason that the plain Strassen algorithm is not as efficient as the well-optimized version from the lab is that it 

involves too much memory copying. It needs to split the large matrix into several smaller, equal-sized matrices, and after 

the computation of the intermediate matrices, it needs to combine them back into a larger matrix. All these operations 

involve memory copying. A good idea to eliminate these memory accesses is to implement an extra layer of matrix views. 

When creating new small matrices, we would not actually create the matrix and copy it in memory. Instead, we would 

create a matrix view, which records the exact area of the large matrix to which the small matrix belongs. 

This seems like a very convincing optimization. However, when I tried to implement this optimization, I found that it is 

not only very difficult to apply but also may not offer any optimization. Even with the above matrix view mechanism, we 

would still need to create P_1…P_7 matrices to store the intermediate results in every round of computation. Therefore, 

the majority of the memory copies would still exist. Furthermore, the matrix view breaks cache locality. In the original 

Strassen algorithm, as we copied the current working part into a small matrix, it would utilize cache spatial locality, as all 

the data in the matrix is sequential in memory. However, when we add the matrix view, the data in the same matrix is no 

longer continuous. 

rowlen  kij  kij_omp  kij_block_omp  strassen  strassen_simd

160 0.008146 0.002176 0.01093 0.0088 0.0004861

208 0.01715 0.002869 0.002971 0.002497 0.0007681

320 0.07402 0.009379 0.008117 0.01393 0.006229

496 0.2466 0.03332 0.02592 0.04052 0.01497

736 0.7111 0.1031 0.07205 0.1528 0.06869

1040 2.004 0.2746 0.2216 0.5071 0.2545

1408 4.972 0.6335 0.5267 0.924 0.4725

1840 11.09 1.302 1.189 1.617 0.8054

2336 22.69 2.652 2.402 4.671 2.465

2896 43.24 4.682 4.421 7.098 3.645
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After checking online sources, I found that no one has implemented this optimization. Thus, I concluded that it is not a 

good optimization and decided to abandon it. 

4.3.2 A Comparison of Strassen Algorithm Breakpoints 

As mentioned earlier, the Strassen algorithm will not be efficient for small matrices, and there should be a breakpoint 

during the recursion to switch to the triple-for loop computation. I tested different breakpoints to find the best breakpoint 

for the triple-for loop to take effect. The results are as follows: 

 

Table 3. Comparison of Different Strassen Algorithm Breakpoints 

We can see that when the breakpoint is too small, the algorithm runs extremely slowly, as the overhead of Strassen is 

larger than the time it saves. Fewer levels of Strassen recursion are preferred to achieve better performance. 

4.3.3 Comparison of the Strassen Algorithm on Large Matrices that Do Not Fit into the L3 Cache 

Since we have a 64MB L3 cache, when the row length exceeds 2000, the matrix will not be able to fit into the L3 cache. 

We want to measure the performance on matrix sizes that do not fit into the L3 cache. 

 

Table 4. Comparison of the Strassen Algorithm on Large Matrices that Do Not Fit into the L3 Cache 

In the measurements above, we can see that when the matrix cannot fit into the L3 cache, the Strassen algorithm is still 

efficient and performs better than the optimal kij triple-for loop. 

4.3.4 Comparison of Different Numbers of Threads on the SIMD Strassen Algorithm 

In this section, I use the previously mentioned SIMD-optimized Strassen algorithm code for testing. As mentioned earlier, 

I am using a 16-core, 32-thread processor for the experiment. Here, we want to find the most efficient number of threads 

when running this algorithm. To make the results more accurate, we have increased the breakpoint mentioned above to 

512 for this test. This is because only after the breakpoint will we perform OpenMP parallelization. The results are shown 

below. 

rowlen  strassen_32  strassen_64  strassen_128  strassen_256  strassen_512

160 0.008206 0.004003 0.001769 0.00075 0.0007989

208 0.01368 0.00622 0.003003 0.001199 0.001206

320 0.05784 0.03013 0.01462 0.008218 0.005052

496 0.09142 0.0584 0.03356 0.01926 0.01374

736 0.3892 0.2037 0.1127 0.07627 0.05959

1040 0.7983 0.8168 0.4066 0.212 0.1151

1408 2.618 1.371 0.7272 0.4121 0.27

1840 4.187 2.319 1.203 0.6907 0.4811

2336 14.61 6.755 3.657 2.067 1.368

2896 16.01 10.01 5.64 3.106 2.146

rowlen  kij_block_omp  strassen_simd

1024 0.2496 0.08552

2176 2.093 0.8592

5376 31.62 9.962

10624 258.2 69.58



 

Table 5. Comparison of Different Numbers of Threads on the SIMD Strassen Algorithm 

 

Figure 3. Comparison of Different Numbers of Threads on the SIMD Strassen Algorithm 

As shown in the table, 32 threads run the fastest, followed by 16 threads. This is likely because 32 threads utilize the 

entire CPU resources without too much thread-switching overhead. It is somewhat interesting that the number of threads 

between 16 and 32 do not perform very well. This might be related to OpenMP itself or task splitting. 

5 – Conclusion 

In this final project, we first compared the Strassen algorithm with the triple-for loop matrix multiplication algorithm. 

Then, we listed the optimizations we have already implemented this semester, using the fastest version – the kij triple-for 

loop with blocking and OpenMP enabled – as our baseline. We took the file from Lab 6 as our base file but created a 

fantastic building and testing framework using CMake. We added unit tests for all the functions and verified their 

correctness. We also included performance-based unit tests to measure and compare the performance. 

With this file base, we initially implemented the plain Strassen algorithm, strictly following its definition. Although its 

speed was much faster than the plain kij for loop, the performance still could not surpass the optimized version we 

completed in the lab. Subsequently, we applied SIMD intrinsics to matrix addition, subtraction, and multiplication. After 

these modifications, the performance significantly improved and outperformed the optimal version from the lab. 

 

rowlen  strassen_omp16  strassen_omp20  strassen_omp24  strassen_omp28  strassen_omp32  strassen_omp36  strassen_omp48

160 0.000995 0.0007386 0.000737 0.0007679 0.0007704 0.0008049 0.0008013

208 0.001575 0.001998 0.002036 0.00121 0.001212 0.001273 0.001233

320 0.005604 0.005401 0.004864 0.004891 0.005072 0.004602 0.00345

496 0.01802 0.02195 0.01824 0.01828 0.01375 0.01371 0.01553

736 0.05448 0.05622 0.05352 0.05277 0.04334 0.04332 0.03429

1040 0.0988 0.1285 0.1098 0.1085 0.09255 0.1153 0.1278

1408 0.2271 0.2643 0.2248 0.2272 0.1918 0.2447 0.2416

1840 0.5302 0.5415 0.4745 0.4579 0.4121 0.4672 0.4194

2336 1.015 1.2 0.982 0.979 0.9559 1.152 1.117

2896 1.806 2.153 1.86 1.779 1.545 1.925 1.765


